AAAI 2025. This is the authors' version of the work. It is posted here for your personal use only. Not for
redistribution. The definitive version of the work is published In Proceedings of the 39th Annual AAAI
Conferenceon Artificial Intelligence (AAAI 2025), DOI: XXXX

SuBiTO: Synopsis-based Training Optimization for Continuous Real-Time Neural
Learning over Big Streaming Data

Errikos Streviniotis'?, George Klioumis'?, Nikos Giatrakos'

Technical University of Crete
2 Athena Research Center
estreviniotis @tuc.gr, gklioumis @tuc.gr, ngiatrakos @tuc.gr

Abstract

In machine learning applications over Big streaming Data,
Neural Networks (NNs) are continuously and rapidly trained
over voluminous data arriving at high speeds. As soon as a
new version of the NN becomes available, it gets deployed for
prediction purposes (e.g. classification). The real-time char-
acter of such applications greatly depends on the volume and
velocity of the data streams, as well as the NN complex-
ity. Training on large volume of ingested streams or using
complex NN, potentially increases accuracy, but may com-
promise the real-time character of those applications. In this
work, we present SuBiTO, a framework that automatically
and continuously learns the training time vs accuracy trade-
offs as new data stream in and fine tunes: (i) the number,
size and type of NN layers; (ii) the size of the ingested data
via stream synopses specific parameters; and (iii) the number
of training epochs. Finally, SuBiTO suggests optimal sets of
such parameters and detects concept drifts, enabling the hu-
man operator adapt these parameters on-the-fly, at runtime.

Introduction

In streaming settings, such as real-time social media content
moderation/filtering and detection of harmful images on live
platforms, Al systems face significant time pressure to make
rapid decisions. To accomplish these tasks, it is crucial to
use NN that can be trained swiftly, while maintaining high
accuracy. Moreover, to achieve these goals, these applica-
tions should update and adapt their models quickly to the
highly volatile statistical properties of the ever-evolving in-
put. These characteristics of the training setup necessitates
delicate balance between training speed and model accuracy
during the continuous training process.

Several sampling-based methods have been proposed for
speeding up the training time of NN, by approximating the
matrix products. These techniques fall under two categories:
(i) sampling a subset of activated neurons for every hidden
layer at every epoch; and (ii) sampling a subset of neurons
from the previous layer to approximate the current layer’s
activations, using the edges of the sampled neurons (Zhong
et al. 2023; Wang et al. 2018; Huang et al. 2017). None of
these approaches provide a priori known accuracy vs train-
ing time trade-offs for any given, continuously trained NN.
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To fill this gap, we propose SuBiTO a specialized frame-
work designed for real time, online training over Big stream-
ing Data. SuBiTO automatically inspects the training time
vs accuracy trade-offs throughout the training process and
fine tunes (i) the size, number and type of NN layers (ii) the
size of the ingested data by utilizing stream synopses (e.g.
samples, dimensionality reduction, sketches) for input load
shedding (Kontaxakis et al. 2023), (iii) the number of train-
ing epochs. Finally, optimal synopses parameters, NN archi-
tectures and epoch number are suggested providing a priori
known balance between training time and accuracy.

Overview of the SuBiTO Approach

To achieve its goals, SuBiTO (Subito 2024) learns the ac-
curacy and training time under various scenarios. Given the
low training latency target of the involved applications, in-
creased input size dictates shallower, less complex NNs, po-
tentially trained for fewer epochs. Reducing the stream syn-
opsis size may allow training of a deeper NN for a mediocre
number of epochs; but it might be more beneficial to train
a less deep NN for an increased number of epochs. To bal-
ance accuracy and training time, SuBiTO utilizes Bayesian
Optimization (BO) (Snoek, Larochelle, and Adams 2012)
performing limited trials to extract relevant statistics.
Figure 1 illustrates the SuBiTO architecture. For now, as-
sume we have determined all the involved parameters; the
Training Pipeline (blue path) performs the online
training process, by employing a type of synopsis (e.g. strat-
ified sampling) on the input streams, using a specific NN
architecture, trained for a number of epochs. An identical
NN is deployedinthe Prediction Pipeline of the ar-
chitecture. For instance, in an image classification scenario,
the Training Pipeline ingests labeled images from a
Training Topic of Apache Kafka (Sax 2019), the de
facto standard for data stream ingestion (Giatrakos et al.
2023). The Prediction Pipeline (red path) ingests
unlabeled images from a Kafka Prediction Topic and
assigns labels based on the most up-to-date NN. As soon
as the Training Pipeline has an updated model, it
directly passes it, via the Parameters Topic in Fig-
ure 1,tothe Prediction Pipeline, so that predictions
are drawn based on the up-to-date version. Note that, syn-
opses are used to speed up training and make updated mod-
els timely available. Parallel predictors can accelerate the
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Figure 1: The SuBiTO architecture. SuBiTO open source code available at (Subito 2024).

Prediction Pipeline. SuBiTO does not support la-
beling just a sample of tuples of the Prediction Topic,
as this would be impractical for most target applications.
When a concept drift is detected, indicating a shift in the
data distribution, based on any detection function (currently,
we use the KL-divergence), the execution of the SuBiTO
Optimizer (top of Figure 1) is triggered. The Optimizer
collects live input from the Training Topic and per-
forms a number of trials using different NN architectures,
synopses (e.g. sample size) and epoch parameters. To choose
the parameter set of each trial, the SuBiTO Optimizer
probabilistically selects one among three acquisition func-
tions, namely lower confidence bound, expected improve-
ment and probability of improvement (Snoek, Larochelle,
and Adams 2012). After each trial, accuracy and training
time statistics are collected and fed to a Gaussian Process
Regressor (GPR). In BO, the GPR is trained on a limited set
of trials, allowing it to predict the trade-offs for any possible
parameter set. Subsequently, the Optimizer queries the GPR
that provides predictions on the valid parameter sets. The
most preferable such sets are those that maximize a function
capturing accuracy and training time trade-off. The choice of
this function is orthogonal to SuBiTO. Currently, for a sug-
gested parameter set ¢, we use Score(c) = A-accuracy(c)—

(1 —\) - tanh (% - 1) (Stavropoulos et al.

2022) for 0 < A < 1. Hence, SuBiTO computes a weighted
combination of both criteria, penalizing training times above
a target latency. Finally, the user selects the desired parame-
ter set which is then deployed on-the-fly in the Training
Pipeline, while the training, prediction, and concept drift
detection mechanisms function as described earlier.

User Experience and Demonstration Scenarios
(Subito 2024) presents the SuBiTO dashboard developed

in (Streamlit 2024). To validate in practice that SuBiTO
can accommodate any popular neural learning frame-
work, the SuBiTO Optimizer is implemented in the
latest version of Tensorflow, while the Training and
Prediction Pipelines are implemented in PyTorch.
The demonstration will use 2 real-world labeled data
streams from image and video moderation analytics, namely
the NSFW Detect (HuggingFace 2024) and UCF50 (Reddy
and Shah 2013) datasets, for the Training Pipeline.
The Prediction Pipeline will ingest truthful, unla-
beled streams generated by either an a priori trained Gen-
erative Adversarial Networks or a split on the original
dataset for each scenario simulating unbounded, voluminous
streams at high speed.

A human operator (e.g., content moderator, community
managet, etc.) can use the SuBiTO dashboard (Subito 2024)
to set the valid ranges for the system’s parameters, such
as synopses compression ratio for load shedding, possible
ranges of epochs, valid types of NN layers (CNN, LSTM,
RNN, GRU, Dense), via a panel. Upon a concept drift and
the execution of the SuBiTO Optimizer, the human op-
erator can see the Pareto Optimal solutions and the archi-
tectures, as well as expected training loss and accuracy of
the top-3 options based on the defined Score. The human
operator can deploy any of the top-3 alternatives by click-
ing on them. The selected NN is on-the-fly deployed at
runtime in the Training Pipeline along with con-
tinuously updated plots of the actual (instead of expected)
accuracy, training loss and epoch duration. The statistics
of the Prediction Pipeline are presented in a live
bar-chart. The human operator can manually execute the
SuBiTO at any time, bypassing automatic concept drift
detection, for instance, if the Prediction Pipeline
statistics appear unusual or deviate from the expected dis-
tribution.
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